Scattering from a sphere in the axisymmetric formulation#

Copyright © 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken

This demo is implemented in three files: one for the mesh generation with gmsh, one for the calculation of analytical efficiencies, and one for the variational forms and the solver. It illustrates how to:

  • Setup and solve Maxwell’s equations for axisymmetric geometries

  • Implement (axisymmetric) perfectly matched layers

Equations, problem definition and implementation#

First of all, let’s import the modules that will be used:

import sys
from functools import partial

import numpy as np
from mesh_sphere_axis import generate_mesh_sphere_axis
from scipy.special import jv, jvp
from dolfinx import fem, mesh, plot
from dolfinx.io import VTXWriter
from dolfinx.io.gmshio import model_to_mesh
from mpi4py import MPI
import ufl
from petsc4py import PETSc

try:
    import gmsh
except ModuleNotFoundError:
    print("This demo requires gmsh to be installed")
    sys.exit(0)

try:
    import pyvista
    have_pyvista = True
except ModuleNotFoundError:
    print("pyvista and pyvistaqt are required to visualise the solution")
    have_pyvista = False

Since we want to solve time-harmonic Maxwell’s equation, we need to solve a complex-valued PDE, and therefore need to use PETSc compiled with complex numbers.

if not np.issubdtype(PETSc.ScalarType, np.complexfloating):
    print("Demo should only be executed with DOLFINx complex mode")
    exit(0)

Now, let’s formulate our problem. Let’s consider a metallic sphere immersed in a background medium (e.g. vacuum or water) and hit by a plane wave. We want to calculate the scattered electric field scattered. Even though the problem is three-dimensional, we can simplify it into many two-dimensional problems by exploiting its axisymmetric nature. To verify this, let’s consider the weak form of the problem with PML:

\[\begin{split} \begin{align} &\int_{\Omega_m\cup\Omega_b}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r} -\varepsilon_b\right)\mathbf{E}_b \cdot \bar{\mathbf{v}}~\mathrm{d} x\\ +&\int_{\Omega_{pml}}\left[\boldsymbol{\mu}^{-1}_{pml} \nabla \times \mathbf{E}_s \right]\cdot \nabla \times \bar{\mathbf{v}}-k_{0}^{2} \left[\boldsymbol{\varepsilon}_{pml} \mathbf{E}_s \right]\cdot \bar{\mathbf{v}}~ d x=0 \end{align} \end{split}\]

Since we want to exploit the axisymmetry of the problem, we can use cylindrical coordinates as a more appropriate reference system:

\[\begin{split} \begin{align} &\int_{\Omega_{cs}}\int_{0}^{2\pi}-(\nabla \times \mathbf{E}_s) \cdot (\nabla \times \bar{\mathbf{v}})+\varepsilon_{r} k_{0}^{2} \mathbf{E}_s \cdot \bar{\mathbf{v}}+k_{0}^{2}\left(\varepsilon_{r} -\varepsilon_b\right)\mathbf{E}_b \cdot \bar{\mathbf{v}}~ \rho d\rho dz d \phi\\ +&\int_{\Omega_{cs}} \int_{0}^{2\pi}\left[\boldsymbol{\mu}^{-1}_{pml} \nabla \times \mathbf{E}_s \right]\cdot \nabla \times \bar{\mathbf{v}}-k_{0}^{2} \left[\boldsymbol{\varepsilon}_{pml} \mathbf{E}_s \right]\cdot \bar{\mathbf{v}}~ \rho d\rho dz d \phi=0 \end{align} \end{split}\]

Let’s now expand \(\mathbf{E}_s\), \(\mathbf{E}_b\) and \(\bar{\mathbf{v}}\) in cylindrical harmonics:

\[\begin{split} \begin{align} & \mathbf{E}_s(\rho, z, \phi) = \sum_m\mathbf{E}^{(m)}_s(\rho, z)e^{-im\phi} \\ & \mathbf{E}_b(\rho, z, \phi) = \sum_m\mathbf{E}^{(m)}_b(\rho, z)e^{-im\phi} \\ & \bar{\mathbf{v}}(\rho, z, \phi) = \sum_m\bar{\mathbf{v}}^{(m)}(\rho, z)e^{+im\phi}\\ \end{align} \end{split}\]

The curl operator \(\nabla\times\) in cylindrical coordinates becomes:

\[ \begin{aligned} \nabla \times \mathbf{a}= \sum_{m}\left(\nabla \times \mathbf{a}^{(m)}\right) e^{-i m \phi} \end{aligned} \]

with:

\[\begin{split} \begin{align} \left(\nabla \times \mathbf{a}^{(m)}\right) = &\left[\hat{\rho} \left(-\frac{\partial a_{\phi}^{(m)}}{\partial z} -i \frac{m}{\rho} a_{z}^{(m)}\right)+\\ \hat{\phi} \left(\frac{\partial a_{\rho}^{(m)}}{\partial z} -\frac{\partial a_{z}^{(m)}}{\partial \rho}\right)+\right.\\ &\left.+\hat{z}\left(\frac{a_{\phi}^{(m)}}{\rho} +\frac{\partial a_{\phi}^{(m)}}{\partial \rho} +i \frac{m}{\rho} a_{\rho}^{(m)}\right)\right] \end{align} \end{split}\]

By implementing these formula in our weak form, and by assuming an axisymmetric permittivity \(\varepsilon(\rho, z)\), we can write:

\[\begin{split} \begin{align} \sum_{n, m}\int_{\Omega_{cs}}&-(\nabla \times \mathbf{E}^{(m)}_s) \cdot (\nabla \times \bar{\mathbf{v}}^{(m)})+\varepsilon_{r} k_{0}^{2} \mathbf{E}^{(m)}_s \cdot \bar{\mathbf{v}}^{(m)}+k_{0}^{2} \left(\varepsilon_{r} -\varepsilon_b\right)\mathbf{E}^{(m)}_b \cdot \bar{\mathbf{v}}^{(m)}\\ &+\left(\boldsymbol{\mu}^{-1}_{pml} \nabla \times \mathbf{E}^{(m)}_s \right)\cdot \nabla \times \bar{\mathbf{v}}^{(m)}-k_{0}^{2} \left(\boldsymbol{\varepsilon}_{pml} \mathbf{E}^{(m)}_s \right)\cdot \bar{\mathbf{v}}^{(m)}~ \rho d\rho dz \int_{0}^{2 \pi} e^{-i(m-n) \phi} d \phi=0 \end{align} \end{split}\]

For the last integral, we have that:

\[\begin{split} \int_{0}^{2 \pi} e^{-i(m-n) \phi}d \phi= \begin{cases} \begin{align} 2\pi ~~~&\textrm{if } m=n\\ 0 ~~~&\textrm{if }m\neq n\\ \end{align} \end{cases} \end{split}\]

We can therefore consider only the case \(m = n\) and simplify the summation in the following way:

\[\begin{split} \begin{align} \sum_{m}\int_{\Omega_{cs}}&-(\nabla \times \mathbf{E}^{(m)}_s) \cdot (\nabla \times \bar{\mathbf{v}}^{(m)})+\varepsilon_{r} k_{0}^{2} \mathbf{E}^{(m)}_s \cdot \bar{\mathbf{v}}^{(m)} +k_{0}^{2}\left(\varepsilon_{r} -\varepsilon_b\right)\mathbf{E}^{(m)}_b \cdot \bar{\mathbf{v}}^{(m)}\\ &+\left(\boldsymbol{\mu}^{-1}_{pml} \nabla \times \mathbf{E}^{(m)}_s \right)\cdot \nabla \times \bar{\mathbf{v}}^{(m)}-k_{0}^{2} \left(\boldsymbol{\varepsilon}_{pml} \mathbf{E}^{(m)}_s \right)\cdot \bar{\mathbf{v}}^{(m)}~ \rho d\rho dz =0 \end{align} \end{split}\]

In the end, we have multiple weak forms corresponding to the different cylindrical harmonics, where the integration is performed over a 2D domain.

Let’s now implement this problem in DOLFINx. As a first step we can define the function for the \(\nabla\times\) operator in cylindrical coordinates:

def curl_axis(a, m: int, rho):

    curl_r = -a[2].dx(1) - 1j * m / rho * a[1]
    curl_z = a[2] / rho + a[2].dx(0) + 1j * m / rho * a[0]
    curl_p = a[0].dx(1) - a[1].dx(0)

    return ufl.as_vector((curl_r, curl_z, curl_p))

Then we need to define the analytical formula for the background field. For our purposes, we can consider the wavevector and the electric field lying in the same plane of our 2D domain, while the magnetic field is transverse to such domain. For this reason, we will refer to this polarization as TMz polarization.

For a TMz polarization, the cylindrical harmonics \(\mathbf{E}^{(m)}_b\) of the background field can be written in this way (Wait 1955):

\[\begin{split} \begin{align} \mathbf{E}^{(m)}_b = &\hat{\rho} \left(E_{0} \cos \theta e^{i k z \cos \theta} i^{-m+1} J_{m}^{\prime}\left(k_{0} \rho \sin \theta\right)\right)\\ +&\hat{z} \left(E_{0} \sin \theta e^{i k z \cos \theta}i^{-m} J_{m} \left(k \rho \sin \theta\right)\right)\\ +&\hat{\phi} \left(\frac{E_{0} \cos \theta}{k \rho \sin \theta} e^{i k z \cos \theta} i^{-m} J_{m}\left(k \rho \sin \theta\right)\right) \end{align} \end{split}\]

with \(k = 2\pi n_b/\lambda = k_0n_b\) being the wavevector, \(\theta\) being the angle between \(\mathbf{E}_b\) and \(\hat{\rho}\), and \(J_m\) representing the \(m\)-th order Bessel function of first kind and \(J_{m}^{\prime}\) its derivative. In DOLFINx, we can implement these functions in this way:

def background_field_rz(theta: float, n_bkg: float, k0: float, m: int, x):

    k = k0 * n_bkg

    a_r = (np.cos(theta) * np.exp(1j * k * x[1] * np.cos(theta))
           * (1j)**(-m + 1) * jvp(m, k * x[0] * np.sin(theta), 1))

    a_z = (np.sin(theta) * np.exp(1j * k * x[1] * np.cos(theta))
           * (1j)**-m * jv(m, k * x[0] * np.sin(theta)))

    return (a_r, a_z)


def background_field_p(theta: float, n_bkg: float, k0: float, m: int, x):

    k = k0 * n_bkg

    a_p = (np.cos(theta) / (k * x[0] * np.sin(theta))
           * np.exp(1j * k * x[1] * np.cos(theta)) * m
           * (1j)**(-m) * jv(m, k * x[0] * np.sin(theta)))

    return a_p

For PML, we can introduce them in our original domain as a spherical shell. We can then implement a complex coordinate transformation of this form in this spherical shell:

\[\begin{split} \begin{align} & \rho^{\prime} = \rho\left[1 +j \alpha/k_0 \left(\frac{r - r_{dom}}{r~r_{pml}}\right)\right] \\ & z^{\prime} = z\left[1 +j \alpha/k_0 \left(\frac{r - r_{dom}}{r~r_{pml}}\right)\right] \\ & \phi^{\prime} = \phi \\ \end{align} \end{split}\]

with \(\alpha\) being a parameter tuning the absorption inside the PML, and \(r = \sqrt{\rho^2 + z^2}\). This coordinate transformation has the following jacobian:

\[\begin{split} \mathbf{J}=\mathbf{A}^{-1}= \nabla\boldsymbol{\rho}^ \prime(\boldsymbol{\rho}) = \left[\begin{array}{ccc} \frac{\partial \rho^{\prime}}{\partial \rho} & \frac{\partial z^{\prime}}{\partial \rho} & 0 \\ \frac{\partial \rho^{\prime}}{\partial z} & \frac{\partial z^{\prime}}{\partial z} & 0 \\ 0 & 0 & \frac{\rho^\prime}{\rho}\frac{\partial \phi^{\prime}}{\partial \phi} \end{array}\right]=\left[\begin{array}{ccc} J_{11} & J_{12} & 0 \\ J_{21} & J_{22} & 0 \\ 0 & 0 & J_{33} \end{array}\right] \end{split}\]

which we can use to calculate \({\boldsymbol{\varepsilon}_{pml}}\) and \({\boldsymbol{\mu}_{pml}}\):

\[\begin{split} \begin{align} & {\boldsymbol{\varepsilon}_{pml}} = A^{-1} \mathbf{A} {\boldsymbol{\varepsilon}_b}\mathbf{A}^{T}\\ & {\boldsymbol{\mu}_{pml}} = A^{-1} \mathbf{A} {\boldsymbol{\mu}_b}\mathbf{A}^{T} \end{align} \end{split}\]

For doing these calculations, we define the pml_coordinate and create_mu_eps functions:

def pml_coordinate(
        x, r, alpha: float, k0: float, radius_dom: float, radius_pml: float):

    return (x + 1j * alpha / k0 * x * (r - radius_dom) / (radius_pml * r))


def create_eps_mu(pml, rho, eps_bkg, mu_bkg):

    J = ufl.grad(pml)

    # Transform the 2x2 Jacobian into a 3x3 matrix.
    J = ufl.as_matrix(((J[0, 0], J[0, 1], 0),
                       (J[1, 0], J[1, 1], 0),
                       (0, 0, pml[0] / rho)))

    A = ufl.inv(J)
    eps_pml = ufl.det(J) * A * eps_bkg * ufl.transpose(A)
    mu_pml = ufl.det(J) * A * mu_bkg * ufl.transpose(A)
    return eps_pml, mu_pml

We can now define some constants and geometrical parameters, and then we can generate the mesh with Gmsh, by using the function generate_mesh_sphere_axis in mesh_sphere_axis.py:

# Constants
epsilon_0 = 8.8541878128 * 10**-12  # Vacuum permittivity
mu_0 = 4 * np.pi * 10**-7  # Vacuum permeability
Z0 = np.sqrt(mu_0 / epsilon_0)  # Vacuum impedance
I0 = 0.5 / Z0  # Intensity of electromagnetic field

# Radius of the sphere
radius_sph = 0.025

# Radius of the domain
radius_dom = 1

# Radius of the boundary where scattering efficiency
# is calculated
radius_scatt = 0.4 * radius_dom

# Radius of the PML shell
radius_pml = 0.25

# Mesh sizes
mesh_factor = 1
in_sph_size = mesh_factor * 2.0e-3
on_sph_size = mesh_factor * 2.0e-3
scatt_size = mesh_factor * 60.0e-3
pml_size = mesh_factor * 40.0e-3

# Tags for the subdomains
au_tag = 1
bkg_tag = 2
pml_tag = 3
scatt_tag = 4

# Mesh generation
model = generate_mesh_sphere_axis(
    radius_sph, radius_scatt, radius_dom, radius_pml,
    in_sph_size, on_sph_size, scatt_size, pml_size,
    au_tag, bkg_tag, pml_tag, scatt_tag)

domain, cell_tags, facet_tags = model_to_mesh(
    model, MPI.COMM_WORLD, 0, gdim=2)

gmsh.finalize()
MPI.COMM_WORLD.barrier()
Error   : Unknown mesh format '/tmp/tmp4yxpj6eu.json'
Info    : Meshing 1D...
Info    : [  0%] Meshing curve 1 (Circle)
Info    : [ 10%] Meshing curve 2 (Circle)
Info    : [ 20%] Meshing curve 3 (Circle)
Info    : [ 30%] Meshing curve 4 (Circle)
Info    : [ 30%] Meshing curve 5 (Circle)
Info    : [ 40%] Meshing curve 6 (Line)
Info    : [ 50%] Meshing curve 7 (Line)
Info    : [ 50%] Meshing curve 8 (Line)
Info    : [ 60%] Meshing curve 9 (Line)
Info    : [ 70%] Meshing curve 10 (Line)
Info    : [ 80%] Meshing curve 11 (Line)
Info    : [ 80%] Meshing curve 12 (Line)
Info    : [ 90%] Meshing curve 13 (Line)
Info    : [100%] Meshing curve 14 (Line)
Info    : Done meshing 1D (Wall 0.0110353s, CPU 0.010932s)
Info    : Meshing 2D...
Info    : [  0%] Meshing surface 1 (Plane, Frontal-Delaunay)
Info    : [ 20%] Meshing surface 2 (Plane, Frontal-Delaunay)
Info    : [ 40%] Meshing surface 3 (Plane, Frontal-Delaunay)
Info    : [ 60%] Meshing surface 4 (Plane, Frontal-Delaunay)
Info    : [ 80%] Meshing surface 5 (Plane, Frontal-Delaunay)
Info    : Done meshing 2D (Wall 0.187923s, CPU 0.188612s)
Info    : 2402 nodes 4972 elements

Let’s have a visual check of the mesh and of the subdomains by plotting them with PyVista:

if have_pyvista:
    topology, cell_types, geometry = plot.create_vtk_mesh(domain, 2)
    grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
    pyvista.set_jupyter_backend("pythreejs")
    plotter = pyvista.Plotter()
    num_local_cells = domain.topology.index_map(domain.topology.dim).size_local
    grid.cell_data["Marker"] = \
        cell_tags.values[cell_tags.indices < num_local_cells]
    grid.set_active_scalars("Marker")
    plotter.add_mesh(grid, show_edges=True)
    plotter.view_xy()
    if not pyvista.OFF_SCREEN:
        plotter.show()
    else:
        pyvista.start_xvfb()
        figure = plotter.screenshot("sphere_axis_mesh.png",
                                    window_size=[1000, 1000])
2023-02-22 15:44:29.690 (   0.776s) [        F92C1480]    vtkExtractEdges.cxx:435   INFO| Executing edge extractor: points are renumbered
2023-02-22 15:44:29.695 (   0.781s) [        F92C1480]    vtkExtractEdges.cxx:551   INFO| Created 6993 edges

We can now define our function space. For the \(\hat{\rho}\) and \(\hat{z}\) components of the electric field, we will use Nedelec elements, while for the \(\hat{\phi}\) components we will use Lagrange elements:

degree = 3
curl_el = ufl.FiniteElement("N1curl", domain.ufl_cell(), degree)
lagr_el = ufl.FiniteElement("Lagrange", domain.ufl_cell(), degree)
V = fem.FunctionSpace(domain, ufl.MixedElement([curl_el, lagr_el]))

Let’s now define our integration domains:

# Measures for subdomains
dx = ufl.Measure("dx", domain, subdomain_data=cell_tags,
                 metadata={'quadrature_degree': 60})

dDom = dx((au_tag, bkg_tag))
dPml = dx(pml_tag)

Let’s now define the \(\varepsilon_r\) function:

n_bkg = 1  # Background refractive index
eps_bkg = n_bkg**2  # Background relative permittivity
eps_au = -1.0782 + 1j * 5.8089

D = fem.FunctionSpace(domain, ("DG", 0))
eps = fem.Function(D)
au_cells = cell_tags.find(au_tag)
bkg_cells = cell_tags.find(bkg_tag)
eps.x.array[au_cells] = np.full_like(
    au_cells, eps_au, dtype=np.complex128)
eps.x.array[bkg_cells] = np.full_like(bkg_cells, eps_bkg, dtype=np.complex128)
eps.x.scatter_forward()

We can now define the characteristic parameters of our background field:

wl0 = 0.4  # Wavelength of the background field
k0 = 2 * np.pi / wl0  # Wavevector of the background field
theta = np.pi / 4  # Angle of incidence of the background field
m_list = [0, 1]  # list of harmonics

with m_list being a list containing the harmonic numbers we want to solve the problem for. For subwavelength structure (as in our case), we can limit the calculation to few harmonic numbers, i.e. \(m = -1, 0, 1\). Besides, due to the symmetry of Bessel functions, the solutions for \(m = \pm 1\) are the same, and therefore we can just consider positive harmonic numbers.

We can now define eps_pml and mu_pml:

rho, z = ufl.SpatialCoordinate(domain)
alpha = 5
r = ufl.sqrt(rho**2 + z**2)

pml_coords = ufl.as_vector((
    pml_coordinate(rho, r, alpha, k0, radius_dom, radius_pml),
    pml_coordinate(z, r, alpha, k0, radius_dom, radius_pml)))

eps_pml, mu_pml = create_eps_mu(pml_coords, rho, eps_bkg, 1)

We can now define other objects that will be used inside our solver loop:

# Function spaces for saving the solution
V_dg = fem.VectorFunctionSpace(domain, ("DG", degree))
V_lagr = fem.FunctionSpace(domain, ("Lagrange", degree))

# Function for saving the rho and z component of the electric field
Esh_rz_m_dg = fem.Function(V_dg)

# Total field
Eh_m = fem.Function(V)
Esh = fem.Function(V)

n = ufl.FacetNormal(domain)
n_3d = ufl.as_vector((n[0], n[1], 0))

# Geometrical cross section of the sphere, for efficiency calculation
gcs = np.pi * radius_sph**2

# Marker functions for the scattering efficiency integral
marker = fem.Function(D)
scatt_facets = facet_tags.find(scatt_tag)
incident_cells = mesh.compute_incident_entities(domain, scatt_facets,
                                                domain.topology.dim - 1,
                                                domain.topology.dim)
midpoints = mesh.compute_midpoints(
    domain, domain.topology.dim, incident_cells)
inner_cells = incident_cells[(midpoints[:, 0]**2
                              + midpoints[:, 1]**2) < (radius_scatt)**2]
marker.x.array[inner_cells] = 1

# Define integration domain for the gold sphere
dAu = dx(au_tag)

# Define integration facet for the scattering efficiency
dS = ufl.Measure("dS", domain, subdomain_data=facet_tags)

phi = 0

We can now solve our problem for all the chosen harmonic numbers:

for m in m_list:

    # Definition of Trial and Test functions
    Es_m = ufl.TrialFunction(V)
    v_m = ufl.TestFunction(V)

    # Background field
    Eb_m = fem.Function(V)
    f_rz = partial(background_field_rz, theta, n_bkg, k0, m)
    f_p = partial(background_field_p, theta, n_bkg, k0, m)
    Eb_m.sub(0).interpolate(f_rz)
    Eb_m.sub(1).interpolate(f_p)

    curl_Es_m = curl_axis(Es_m, m, rho)
    curl_v_m = curl_axis(v_m, m, rho)

    F = - ufl.inner(curl_Es_m, curl_v_m) * rho * dDom \
        + eps * k0 ** 2 * ufl.inner(Es_m, v_m) * rho * dDom \
        + k0 ** 2 * (eps - eps_bkg) * ufl.inner(Eb_m, v_m) * rho * dDom \
        - ufl.inner(ufl.inv(mu_pml) * curl_Es_m, curl_v_m) * rho * dPml \
        + k0 ** 2 * ufl.inner(eps_pml * Es_m, v_m) * rho * dPml

    a, L = ufl.lhs(F), ufl.rhs(F)

    problem = fem.petsc.LinearProblem(a, L, bcs=[], petsc_options={
                                      "ksp_type": "preonly", "pc_type": "lu"})
    Esh_m = problem.solve()

    Esh_rz_m, Esh_p_m = Esh_m.split()

    # Interpolate over rho and z components over DG space
    Esh_rz_m_dg.interpolate(Esh_rz_m)

    # Save solutions
    with VTXWriter(domain.comm, f"sols/Es_rz_{m}.bp", Esh_rz_m_dg) as f:
        f.write(0.0)
    with VTXWriter(domain.comm, f"sols/Es_p_{m}.bp", Esh_p_m) as f:
        f.write(0.0)

    # Define scattered magnetic field
    Hsh_m = 1j * curl_axis(Esh_m, m, rho) / (Z0 * k0 * n_bkg)

    # Total electric field
    Eh_m.x.array[:] = Eb_m.x.array[:] + Esh_m.x.array[:]

    if m == 0:

        Esh.x.array[:] = Esh_m.x.array[:] * np.exp(- 1j * m * phi)

    elif m == m_list[0]:

        Esh.x.array[:] = 2 * Esh_m.x.array[:] * np.exp(- 1j * m * phi)

    else:

        Esh.x.array[:] += 2 * Esh_m.x.array[:] * np.exp(- 1j * m * phi)

    # Efficiencies calculation

    if m == 0:  # initialize and do not add 2 factor
        P = np.pi * ufl.inner(ufl.cross(Esh_m, ufl.conj(Hsh_m)), n_3d) * marker
        Q = np.pi * eps_au.imag * k0 * (ufl.inner(Eh_m, Eh_m)) / Z0 / n_bkg

        q_abs_fenics_proc = (fem.assemble_scalar(
                             fem.form(Q * rho * dAu)) / gcs / I0).real
        q_sca_fenics_proc = (fem.assemble_scalar(
                             fem.form((P('+') + P('-')) * rho * dS(scatt_tag))) / gcs / I0).real
        q_abs_fenics = domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
        q_sca_fenics = domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)

    elif m == m_list[0]:  # initialize and add 2 factor
        P = 2 * np.pi * ufl.inner(ufl.cross(Esh_m,
                                  ufl.conj(Hsh_m)), n_3d) * marker
        Q = 2 * np.pi * eps_au.imag * k0 * (ufl.inner(Eh_m, Eh_m)) / Z0 / n_bkg

        q_abs_fenics_proc = (fem.assemble_scalar(
            fem.form(Q * rho * dAu)) / gcs / I0).real
        q_sca_fenics_proc = (fem.assemble_scalar(
                             fem.form((P('+') + P('-')) * rho * dS(scatt_tag))) / gcs / I0).real
        q_abs_fenics = domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
        q_sca_fenics = domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)

    else:  # do not initialize and add 2 factor
        P = 2 * np.pi * ufl.inner(ufl.cross(Esh_m,
                                  ufl.conj(Hsh_m)), n_3d) * marker
        Q = 2 * np.pi * eps_au.imag * k0 * (ufl.inner(Eh_m, Eh_m)) / Z0 / n_bkg

        q_abs_fenics_proc = (fem.assemble_scalar(
            fem.form(Q * rho * dAu)) / gcs / I0).real
        q_sca_fenics_proc = (fem.assemble_scalar(
                             fem.form((P('+') + P('-')) * rho * dS(scatt_tag))) / gcs / I0).real
        q_abs_fenics += domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
        q_sca_fenics += domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)

q_ext_fenics = q_abs_fenics + q_sca_fenics
WARNING:py.warnings:/usr/local/lib/python3.10/dist-packages/ffcx/element_interface.py:81: UserWarning: Number of integration points per cell is: 961. Consider using 'quadrature_degree' to reduce number.
  warnings.warn(

Let’s compare the analytical and numerical efficiencies, and let’s print the results:

q_abs_analyt = 0.9622728008329892
q_sca_analyt = 0.07770397394691526
q_ext_analyt = q_abs_analyt + q_sca_analyt
# Error calculation
err_abs = np.abs(q_abs_analyt - q_abs_fenics) / q_abs_analyt
err_sca = np.abs(q_sca_analyt - q_sca_fenics) / q_sca_analyt
err_ext = np.abs(q_ext_analyt - q_ext_fenics) / q_ext_analyt

if MPI.COMM_WORLD.rank == 0:

    print()
    print(f"The analytical absorption efficiency is {q_abs_analyt}")
    print(f"The numerical absorption efficiency is {q_abs_fenics}")
    print(f"The error is {err_abs*100}%")
    print()
    print(f"The analytical scattering efficiency is {q_sca_analyt}")
    print(f"The numerical scattering efficiency is {q_sca_fenics}")
    print(f"The error is {err_sca*100}%")
    print()
    print(f"The analytical extinction efficiency is {q_ext_analyt}")
    print(f"The numerical extinction efficiency is {q_ext_fenics}")
    print(f"The error is {err_ext*100}%")

    assert err_abs < 0.01
    assert err_sca < 0.01
    assert err_ext < 0.01


Esh_rz, Esh_p = Esh.split()

Esh_rz_dg = fem.Function(V_dg)
Esh_r_dg = fem.Function(V_dg)

# Interpolate over rho and z components over DG space
Esh_rz_dg.interpolate(Esh_rz)

with VTXWriter(domain.comm, "sols/Es_rz.bp", Esh_rz_dg) as f:
    f.write(0.0)
with VTXWriter(domain.comm, "sols/Es_p.bp", Esh_p) as f:
    f.write(0.0)

if have_pyvista:
    V_cells, V_types, V_x = plot.create_vtk_mesh(V_dg)
    V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
    Esh_r_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
    Esh_r_values[:, :domain.topology.dim] = \
        Esh_rz_dg.x.array.reshape(V_x.shape[0], domain.topology.dim).real

    V_grid.point_data["u"] = Esh_r_values

    pyvista.set_jupyter_backend("pythreejs")
    plotter = pyvista.Plotter()

    plotter.add_text("magnitude", font_size=12, color="black")
    plotter.add_mesh(V_grid.copy(), show_edges=False)
    plotter.view_xy()
    plotter.link_views()

    if not pyvista.OFF_SCREEN:
        plotter.show()
    else:
        pyvista.start_xvfb()
        plotter.screenshot("Esh_r.png", window_size=[800, 800])
The analytical absorption efficiency is 0.9622728008329892
The numerical absorption efficiency is 0.9583126377910707
The error is 0.4115426559381476%

The analytical scattering efficiency is 0.07770397394691526
The numerical scattering efficiency is 0.07737655859437421
The error is 0.42136242962905424%

The analytical extinction efficiency is 1.0399767747799045
The numerical extinction efficiency is 1.0356891963854449
The error is 0.4122763602453518%